
Development of Synthetic Historical Topography from Shorelines and Lidar to Assess 

Shoreline Change Risk 
Defining the topography/morphology of beaches prior to lidar is difficult, however, to assess the real 

changes occurring on a beach over the long-term it is important. As a result, we are typically forced to 

default to shoreline change as a 1D definition in a 3D world. The generation of, or existence of, historic 

shorelines are much easier to generate and/or find. Such is the situation on Sullivan’s Island, SC. 

Sullivan’s Island (SI) is, however, lucky to be home to a long history of lidar collection. Data extend from 

1996 to 2017; almost making it a long-term analysis tool itself.  

The goal of this work was to really make the lidar data a long-term data set going back to 1958 so that 

historic topographic trends can be used to describe the risk of shoreline change. Risk is highly dependent 

on elevation, i.e., if a bluff is 10 ft high and has been for 60 years the chances that it will be below the 

tideline in the near future is small. If, however, that bluff is transient (growing and washing away at 

some shorter time interval) then the risk of it being below the tideline is higher. So, in this work I am, in 

keeping with this example, trying to define how transient the bluff is. 

Steps 

• Define a Median Beach Topography (MBT) from Lidar 

• Generate Historic and Median Shorelines and Profiles 

• Create Grid Points of Median Topography and Fit to Historic Shoreline 

• Generate Synthetic Historic Topography 

• Measure Trends at 5 m Grid Spacings 

• Interpolate Trends  

• Analysis: Generate Future Topography, Assess Risks 

Define a Median Beach Topography from Lidar 
The Median Beach Topography (MBT) was generated by using 6 lidar data sets. All of the datasets were 

sourced from NOAA’s Digital Coast. Some of the datasets had bathy data, but most did not. Generic 

bathymetry from the USGS CoNED was used where needed to populate bathymetry (Figure 1). This is a 

known source of error in some of the datasets.   



 

Figure 1. 2007 Topography with bathy from USGS Topo-Bathy surface where data was missing.  

Once all data lidar datasets (1997 to 2017) were combined with bathymetry, where needed, a median 

surface was created (Figure 2). This MBT surface was used along with shorelines to hindcast the 

‘average’ beach morphology.  

Earlier work1 used this median surface along with the standard deviations to define the risks of shoreline 

change. The risks could, in turn, be used to define the volume of sediment above the normal ‘additions’ 

on a renourished beach that were required to maintain a certain level of risk. 

 
1 See https://www.geosciconsultants.com/blog/2019/2/25/measuring-shoreline-change-using-statistics-a-
different-way-to-look-toward-the-future-from-the-past 

https://www.geosciconsultants.com/blog/2019/2/25/measuring-shoreline-change-using-statistics-a-different-way-to-look-toward-the-future-from-the-past
https://www.geosciconsultants.com/blog/2019/2/25/measuring-shoreline-change-using-statistics-a-different-way-to-look-toward-the-future-from-the-past


 

Figure 2. Median Beach Topography 

Historic Shorelines and Profiles 
Shorelines were generated from aerial imagery and from lidar surfaces. Historic shorelines were 

digitized from wet-dry lines and used as a surrogate for the mean high water elevation at the time of the 

imagery. The median topography was contoured at 0.8 m NAVD88 (roughly MHHW) to generate a 

shoreline representing the “median mean-high-water elevation”.  

 

Figure 3. Historic shorelines (black) and the MBT 0.8 m (NAVD88) contour. 

To help align the MBT surface to the earlier shorelines a second piece of information was added: generic 

profiles to help orient the alongshore alignment of the MBT surface. These profiles are used to geo-



locate the MBT surface via georeferencing points placed at each line endpoint and line intersections. 

The historic cross-shore profiles are adjusted the same linear distance on- or off-shore as the historic 

shoreline is in relation to the MBT shoreline (Figure 4). 

 

Figure 4. Cross shore profiles and their adjustment based on shoreline location. The historic shoreline and profiles are blue, the 
MBT and profiles are red. 

Create Grid Points of Median Topography and Fit to Historic Shoreline 
The MBT grid (5m) was converted to a lidar point data set. Points falling on the profiles and shoreline 

(red lines in Figure 4) were re-classified (i.e., from unclassified to ground) simply to provide visual 

locations for geo-rectification points.  

Using 50+ points located at the profile ends and at their intersection with the shoreline the MBT lidar 

point set was geo-rectified to the historic shoreline and profiles (Figure 4). The data were re-rectified 

with a 2nd Degree Polynomial transformation. This is not a perfect translation, but it is meant mainly to 

capture the active profile at the time of shoreline digitization.    

 



 

Figure 5. MBT surface converted to lidar points. Points falling on the profiles and shorelines were classified differently than the 
surrounding points. 

 

Figure 6. ‘1968 synthetic lidar points’ with the 1968 shoreline (black line) and the MBT shoreline (red) 



Generate Synthetic Historic Topography 
Once the historic synthetic lidar was created, each lidar data set was gridded (Figure 7). There are some 

areas where the match is not exact but given the fact that the historic shoreline was a snapshot in time, 

the overall agreement appears to be consistent for the long-term use of the data.   

 

Figure 7. 1968 Synthetic DEM with original shoreline (black line) and the synthetic MHW line (red). 

Measure Trends at 5 m Grid Spacings 
A 5m grid is used to capture the trends form the 1958 to 2017 topography. Each point contained the 

elevation of synthetic and real DEMs minus the MBT surface, along with the MBT elevation (Figure 8). 

The use of the MBT surface kept all the values related to change (datum agnostic) instead of a set 

datum. 



 

Figure 8. 5m Base Grid with values from the DEMs 

Interpolate Trends  
Trends were not calculated in the GIS program, instead a spreadsheet was used to generate various 

linear and polynomial regression equations for each node. After different versions and combinations of 

polynomial regression equations failed to provide a stable forecast a combination of linear trends was 

chosen. The linear trends (Figure 9) for the data were calculated for all points (synthetic and real DEMs) 

and just for the most recent data (real lidar). The two equations were combined to provide an average 

trend with each having an equal weight. In this case the real lidar was used in both equations but the 

synthetic lidar only in the long-term (All) equation.  



 

Figure 9. Linear equations used to describe topographic change at each point. Note that positive values (slopes) indicate values 
less than the MBT surface or trend in time. 

Beaches and shorelines are influenced by SLR so to forecast the computed elevation in an MSL datum of 

each point the local SLR trend (from fitting polynomial equation from local water level data since 19802) 

was added to the ‘Combined’ equation. The final equation is unique for each point (5m). In the case 

below (Figure 10) the trend is toward a loss of elevation (with regards to MSL) in the future.  

 
2 See https://www.geosciconsultants.com/slr_sullivans for information on defining SLR curve. 
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Figure 10. Final equation and trend lines for points. 

Analysis: Generate Future Topography, Assess Risks 
Once the equation for each point was been defined the data in the spreadsheet was linked back to the 

spatial layer. The values are used to define a future correction layer such that the equation (Y = 

0.000005 X2 – 0.2345 X + 229; Figure 10) is used to find the difference between the future year (X) 

elevation and the MBT (MBTMSL – Y = Future ElevationMSL). In GIS terms the correction layer is subtracted 

from the MBT in MSL datum to arrive at an MSL elevation for the year chosen (Figure 11).  

 

Figure 11. Profile across the shoreline and the difference between 2017 (dashed red line) and the modeled 2040 surface (green 
area) 
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Analysis 

The analysis is limited by the fact that the future DEM is a model. Although it is an empiric model, it still 

must be viewed as ‘wrong’. To help bring more solidity to an analysis there are past data to measure the 

range of errors and those values can help estimate a range of likelihoods. So, and important aspect of 

this type of model is that error values (measured vs. modeled for each measured time) can be used to 

put some level of confidence to the ensuing comparisons and volume calculations.  

Apart from defining the expected change in profile volumes in the coming years, the example below 

includes the use of a 2020 future surface to compare shoreline location predictions with the present 

(May, 2020) shoreline. This is a more advanced way to measure shoreline change since slope is included 

via the modeled topography.  

In this case the surveyed high-water line (1.04 m NAVD88 based on the local tide gage at high tide) was 

compared to the 2020 theoretical surface and the standard error of the technique. The 1.04 m contour 

line was compared to the underlying 2020 topography and the difference in values (diff = 1.04 – 2020 

surface) was then assessed against the standard error surface (Figure , which was also computed at 5m 

spacing, using a Z score (diff/standard error). A difference of more than 2 standard deviations (+/-) was 

considered a significant change in shoreline behavior from previous trends (Figure 12).  

 

Figure 12. Recent shoreline colored by change significance on 2019 CIR (NAIP) imagery. Red parts of the shoreline indicates 
significant erosion, green significant accretion, and blue a location with no significant variation from the historic trends. 

The highlighted areas (Figure 12) with significant deviation from the trends are consistent with similar 

differences in the underlying 2019 image. The red area was field visited and the change in trends is clear 

(Figure 14). The green area – significant accretion – was flagged as highly accretionary in the most 

recent Sullivan’s Island Beach Report3 

 

 
3 2020 Beach Monitoring Survey, https://sullivansisland.sc.gov/government/plans-reports-and-surveys 

https://sullivansisland.sc.gov/government/plans-reports-and-surveys


 

Figure 13. Standard error surface derived from the differences between the modeled elevations for each year there was lidar 
data. 

 

Figure 14. Area of significant shoreline change (erosion) in Figure 12. The buried engineered pile (probably a relic of an earlier 
storm) is extended seaward about 10 feet and 2-3 feet above active beach profile.  

Final Thoughts 
Sullivan’s Island provides a unique situation where the shoreline has accreted along most of the island. 

This allows a look back at the subsurface geology developed under previous conditions both in real data 

(imagery and shorelines) and with synthetic data (historic topography). The underlying idea of this 



analysis technique is the cyclic nature of the shoreline: the conditions that caused it to prograde in the 

past (Charleston Jetties) will change at some point (SLR and dredging?) and the pendulum will swing 

back towards a previous equilibrium. That said, in the longer-term model predictions, the shoreline at 

Sullivan’s island is fairly stable, so even with SLR it is not expected that the shoreline will resemble the 

1958 shoreline any time soon.  

Like any model the results should be used within reason. This model’s results are an indication of the 

possible outcomes and are intended to be useful not specifically correct. The appealing aspect is that 

the model can grow and capture more recent changes as they are experienced and measured. The 

historic information is not going to change – it forms the backbone of the future learning curve.   


