Development of Synthetic Historical Topography from Shorelines and Lidar to Assess Shoreline Change Risk

Defining the topography/morphology of beaches prior to lidar is difficult, however, to assess the real changes occurring on a beach over the long-term it is important. As a result, we are typically forced to default to shoreline change as a 1D definition in a 3D world. The generation of, or existence of, historic shorelines are much easier to generate and/or find. Such is the situation on Sullivan's Island, SC. Sullivan's Island (SI) is, however, lucky to be home to a long history of lidar collection. Data extend from 1996 to 2017; almost making it a long-term analysis tool itself.

The goal of this work was to really make the lidar data a long-term data set going back to 1958 so that historic topographic trends can be used to describe the risk of shoreline change. Risk is highly dependent on elevation, i.e., if a bluff is 10 ft high and has been for 60 years the chances that it will be below the tideline in the near future is small. If, however, that bluff is transient (growing and washing away at some shorter time interval) then the risk of it being below the tideline is higher. So, in this work I am, in keeping with this example, trying to define how transient the bluff is.

Steps

- Define a Median Beach Topography (MBT) from Lidar
- Generate Historic and Median Shorelines and Profiles
- Create Grid Points of Median Topography and Fit to Historic Shoreline
- Generate Synthetic Historic Topography
- Measure Trends at 5 m Grid Spacings
- Interpolate Trends
- Analysis: Generate Future Topography, Assess Risks

Define a Median Beach Topography from Lidar

The Median Beach Topography (MBT) was generated by using 6 lidar data sets. All of the datasets were sourced from NOAA's Digital Coast. Some of the datasets had bathy data, but most did not. Generic bathymetry from the USGS CoNED was used where needed to populate bathymetry (Figure 1). This is a known source of error in some of the datasets.

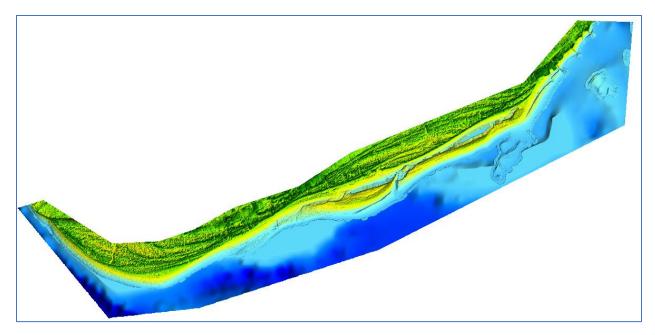


Figure 1. 2007 Topography with bathy from USGS Topo-Bathy surface where data was missing.

Once all data lidar datasets (1997 to 2017) were combined with bathymetry, where needed, a median surface was created (Figure 2). This MBT surface was used along with shorelines to hindcast the 'average' beach morphology.

Earlier work¹ used this median surface along with the standard deviations to define the risks of shoreline change. The risks could, in turn, be used to define the volume of sediment above the normal 'additions' on a renourished beach that were required to maintain a certain level of risk.

¹ See <u>https://www.geosciconsultants.com/blog/2019/2/25/measuring-shoreline-change-using-statistics-a-</u> <u>different-way-to-look-toward-the-future-from-the-past</u>

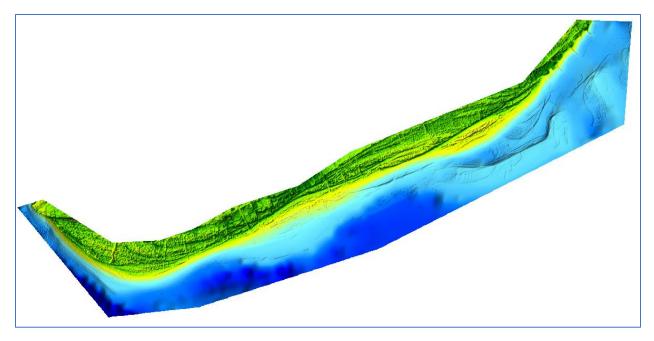


Figure 2. Median Beach Topography

Historic Shorelines and Profiles

Shorelines were generated from aerial imagery and from lidar surfaces. Historic shorelines were digitized from wet-dry lines and used as a surrogate for the mean high water elevation at the time of the imagery. The median topography was contoured at 0.8 m NAVD88 (roughly MHHW) to generate a shoreline representing the "median mean-high-water elevation".

Figure 3. Historic shorelines (black) and the MBT 0.8 m (NAVD88) contour.

To help align the MBT surface to the earlier shorelines a second piece of information was added: generic profiles to help orient the alongshore alignment of the MBT surface. These profiles are used to geo-

locate the MBT surface via georeferencing points placed at each line endpoint and line intersections. The historic cross-shore profiles are adjusted the same linear distance on- or off-shore as the historic shoreline is in relation to the MBT shoreline (Figure 4).

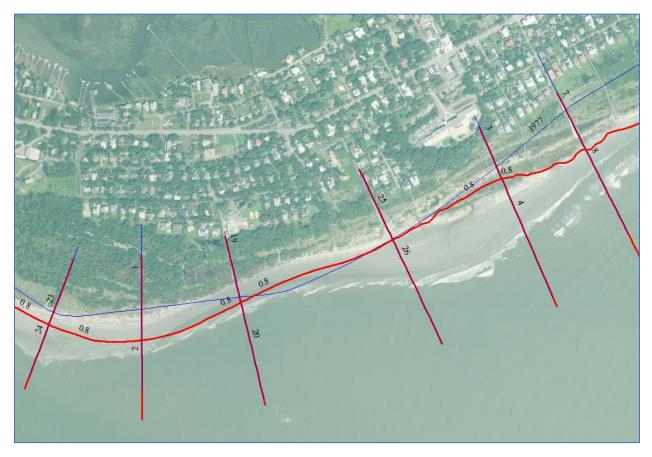


Figure 4. Cross shore profiles and their adjustment based on shoreline location. The historic shoreline and profiles are blue, the MBT and profiles are red.

Create Grid Points of Median Topography and Fit to Historic Shoreline

The MBT grid (5m) was converted to a lidar point data set. Points falling on the profiles and shoreline (red lines in Figure 4) were re-classified (i.e., from unclassified to ground) simply to provide visual locations for geo-rectification points.

Using 50+ points located at the profile ends and at their intersection with the shoreline the MBT lidar point set was geo-rectified to the historic shoreline and profiles (Figure 4). The data were re-rectified with a 2nd Degree Polynomial transformation. This is not a perfect translation, but it is meant mainly to capture the active profile at the time of shoreline digitization.

Figure 5. MBT surface converted to lidar points. Points falling on the profiles and shorelines were classified differently than the surrounding points.

Figure 6. '1968 synthetic lidar points' with the 1968 shoreline (black line) and the MBT shoreline (red)

Generate Synthetic Historic Topography

Once the historic synthetic lidar was created, each lidar data set was gridded (Figure 7). There are some areas where the match is not exact but given the fact that the historic shoreline was a snapshot in time, the overall agreement appears to be consistent for the long-term use of the data.

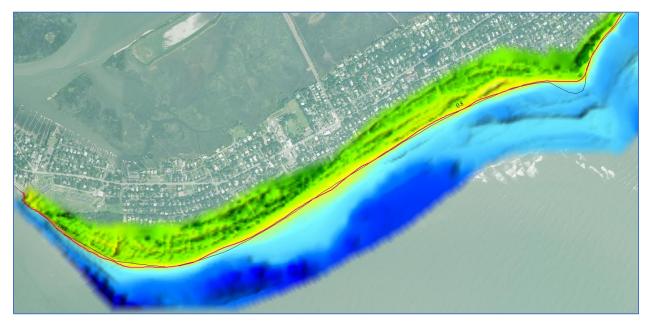


Figure 7. 1968 Synthetic DEM with original shoreline (black line) and the synthetic MHW line (red).

Measure Trends at 5 m Grid Spacings

A 5m grid is used to capture the trends form the 1958 to 2017 topography. Each point contained the elevation of synthetic and real DEMs minus the MBT surface, along with the MBT elevation (Figure 8). The use of the MBT surface kept all the values related to change (datum agnostic) instead of a set datum.

ANM_0201 ANM_0202	ANM_0203 ANM_0204	ANM_0205 ANM_0206	ANM_0207 ANM_0208	ANM_0209 ANM_0210	ANM_0211 ANM_0212	ANM_0213 ANM_0214	ANM_0215 ANM_0216	ANM_0217 ANM_0218	ANM_0219 ANM_0220	ANM_022 ANM_0222
ANN_0201	ANN_0203	ANN_0205	ANN_0207	ANN_0209	ANN_0211	ANN_0213	ANN_0215	ANN_0217	ANN_0219	ANN_0221
ANN_0202	ANN_0204	ANN_0206	ANN_0208	ANN_0210	ANN_0212	ANN_0214	ANN_0216	ANN_0218	ANN_0220	ANN_0222
ANO_0201	ANO_0203	ANO_0205	ANO_0207	ANO_0209	ANO_0211	ANO_0213	ANO_0215	ANO_0217	ANO_0219	ANO_0221
ANO_0202	ANO_0204	ANO_0206	ANO_0208	ANO_0210	ANO_0212	ANO_0214	ANO_0216	ANO_0218	ANO_0220	ANO_0222
ANP_0201	ANP_0203	ANP_0205	6 Feature Inform	antion					× - ⁰²¹⁹	ANP_0221
ANP_0202	ANP_0204	ANP_0206	eature inform	ature Information						ANP_0222
ANQ_0201	ANQ_0203	ANQ_0205	Name:	ANR_0206					0219	ANQ_0221
ANQ_0202	ANQ_0204	ANQ_0206	Feature Type:	Unknown Point Featu	re				220	ANQ_0222
ANR_0201	ANR_0203	ANR 0205	Geometry:	Point location: 607575	5.217 3624604.698 (L	at/Lon: 32° 45' 14.578	3" N, 79° 51' 05.8827'	'W) [0.165 m]	. 0219	ANR_0221
ANR 0202	ANR 0204	ANR_0205 • ANR_0206	Map Name:	Base_grid_all.shp [Index in Layer: 111,735]					220	ANR 0222
ANS_0201	ANS 0203		Right click on an entry for more options (i.e. open URL, etc.)							ANS 0221
ANS 0202	ANS_0203 ANS 0204	ANS_0205 ANS 0206	Attribute			Value			^ _0219 0220	ANS_0221 ANS 0222
-	-	ANT_0205	SLOPE_PCT SLOPE DIR			2.26 SE (139)			0219	-
ANT_0201 ANT 0202	ANT_0203 ANT 0204	ANT 0206	base_elev			1.903			220	ANT_0221 ANT_0222
-	-	-	m1958 m1968			2.219 1.649				
ANU_0201	ANU_0203	ANU_0205	m1977			1.151			0219	ANU_0221
ANU_0202	ANU_0204	ANU_0206	m1988			0.249			220	ANU_0222
ANV_0201	ANV_0203	ANV_0205	m1997 m2000			-0.47 -0.47			_0219	ANV_0221
ANV_0202	ANV_0204	ANV_0206	m2006			-0.267			220	ANV_0222
ANW_0201	ANW_0203	ANW_0205	m2007 m2009			-0.289 -0.297			V_0219	ANW_022
ANW_0202	ANW_0204	ANW_0206	m2009 m2010			-0.297			220	ANW_0222
ANX_0201	ANX_0203	ANX_0205	m2016			-0.297			0219	ANX_0221
ANX 0202	ANX 0204	ANX 0206	m2017			-0.297			× 1220	ANX 0222
ANY 0201	ANY 0203	-	Edit Dele	ete Location	Fly-Through	Graphs Notatio	n Copy to Clipbo	bard	0219	-
ANY 0202	ANY 0204	ANY_0205 ANY 0206	ANY 0208	ANY 0210	ANY 0212	ANY_0214	ANY 0216	ANY 0218	ANY 0220	ANY_0221 ANY 0222
ANZ_0201	ANZ_0203	ANZ_0205	ANZ_0207	ANZ_0209	ANZ_0211	ANZ_0213	ANZ_0215	ANZ_0217	ANZ_0219	ANZ_0221

Figure 8. 5m Base Grid with values from the DEMs

Interpolate Trends

Trends were not calculated in the GIS program, instead a spreadsheet was used to generate various linear and polynomial regression equations for each node. After different versions and combinations of polynomial regression equations failed to provide a stable forecast a combination of linear trends was chosen. The linear trends (Figure 9) for the data were calculated for all points (synthetic and real DEMs) and just for the most recent data (real lidar). The two equations were combined to provide an average trend with each having an equal weight. In this case the real lidar was used in both equations but the synthetic lidar only in the long-term (All) equation.

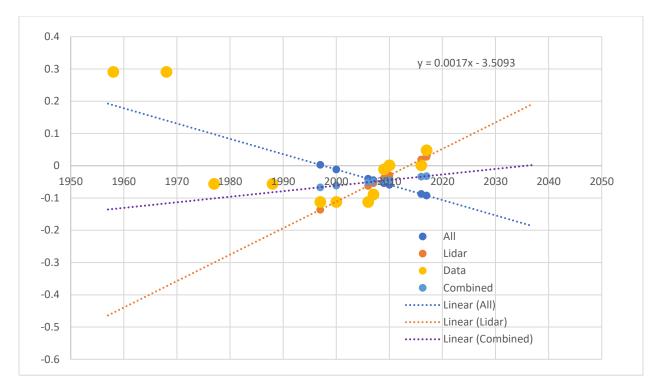
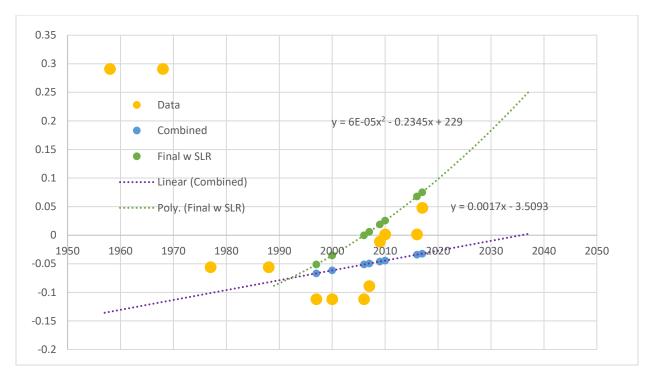



Figure 9. Linear equations used to describe topographic change at each point. Note that positive values (slopes) indicate values less than the MBT surface or trend in time.

Beaches and shorelines are influenced by SLR so to forecast the computed elevation in an MSL datum of each point the local SLR trend (from fitting polynomial equation from local water level data since 1980²) was added to the 'Combined' equation. The final equation is unique for each point (5m). In the case below (Figure 10) the trend is toward a loss of elevation (with regards to MSL) in the future.

² See <u>https://www.geosciconsultants.com/slr_sullivans</u> for information on defining SLR curve.

Analysis: Generate Future Topography, Assess Risks

Once the equation for each point was been defined the data in the spreadsheet was linked back to the spatial layer. The values are used to define a future correction layer such that the equation (Y = $0.000005 X^2 - 0.2345 X + 229$; Figure 10) is used to find the difference between the future year (X) elevation and the MBT (MBT_{MSL} - Y = Future Elevation_{MSL}). In GIS terms the correction layer is subtracted from the MBT in MSL datum to arrive at an MSL elevation for the year chosen (Figure 11).

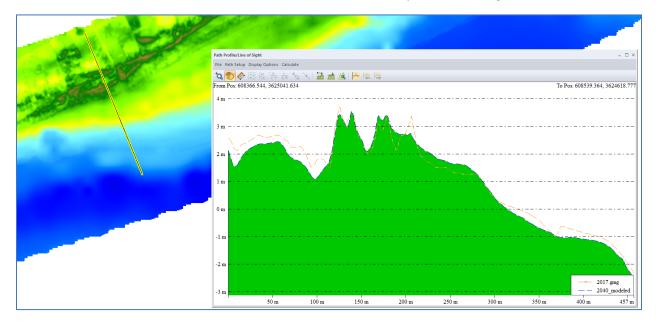


Figure 11. Profile across the shoreline and the difference between 2017 (dashed red line) and the modeled 2040 surface (green area)

Analysis

The analysis is limited by the fact that the future DEM is a model. Although it is an empiric model, it still must be viewed as 'wrong'. To help bring more solidity to an analysis there are past data to measure the range of errors and those values can help estimate a range of likelihoods. So, and important aspect of this type of model is that error values (measured vs. modeled for each measured time) can be used to put some level of confidence to the ensuing comparisons and volume calculations.

Apart from defining the expected change in profile volumes in the coming years, the example below includes the use of a 2020 future surface to compare shoreline location predictions with the present (May, 2020) shoreline. This is a more advanced way to measure shoreline change since slope is included via the modeled topography.

In this case the surveyed high-water line (1.04 m NAVD88 based on the local tide gage at high tide) was compared to the 2020 theoretical surface and the standard error of the technique. The 1.04 m contour line was compared to the underlying 2020 topography and the difference in values (diff = 1.04 - 2020 surface) was then assessed against the standard error surface (Figure , which was also computed at 5m spacing, using a Z score (diff/standard error). A difference of more than 2 standard deviations (+/-) was considered a significant change in shoreline behavior from previous trends (Figure 12).

Figure 12. Recent shoreline colored by change significance on 2019 CIR (NAIP) imagery. Red parts of the shoreline indicates significant erosion, green significant accretion, and blue a location with no significant variation from the historic trends.

The highlighted areas (Figure 12) with significant deviation from the trends are consistent with similar differences in the underlying 2019 image. The red area was field visited and the change in trends is clear (Figure 14). The green area – significant accretion – was flagged as highly accretionary in the most recent Sullivan's Island Beach Report³

³ 2020 Beach Monitoring Survey, <u>https://sullivansisland.sc.gov/government/plans-reports-and-surveys</u>

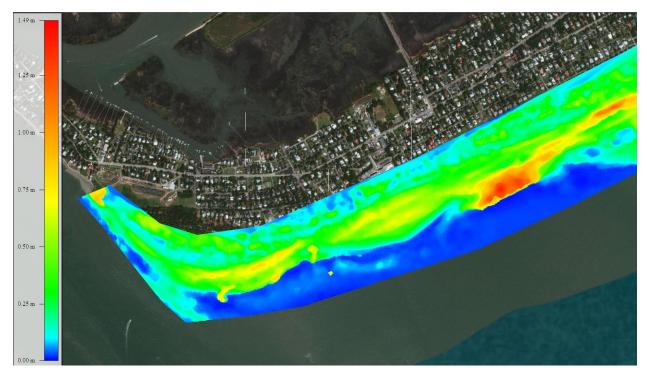


Figure 13. Standard error surface derived from the differences between the modeled elevations for each year there was lidar data.

Figure 14. Area of significant shoreline change (erosion) in Figure 12. The buried engineered pile (probably a relic of an earlier storm) is extended seaward about 10 feet and 2-3 feet above active beach profile.

Final Thoughts

Sullivan's Island provides a unique situation where the shoreline has accreted along most of the island. This allows a look back at the subsurface geology developed under previous conditions both in real data (imagery and shorelines) and with synthetic data (historic topography). The underlying idea of this analysis technique is the cyclic nature of the shoreline: the conditions that caused it to prograde in the past (Charleston Jetties) will change at some point (SLR and dredging?) and the pendulum will swing back towards a previous equilibrium. That said, in the longer-term model predictions, the shoreline at Sullivan's island is fairly stable, so even with SLR it is not expected that the shoreline will resemble the 1958 shoreline any time soon.

Like any model the results should be used within reason. This model's results are an indication of the possible outcomes and are intended to be useful not specifically correct. The appealing aspect is that the model can grow and capture more recent changes as they are experienced and measured. The historic information is not going to change – it forms the backbone of the future learning curve.